(本小题共12分)已知椭圆过点,且离心率。(Ⅰ)求椭圆方程;(Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
已知关于x,y的方程C:.(1)当m为何值时,方程C表示圆。(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且MN=,求m的值。
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点,(I) 求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;
一辆货车的最大载重量为吨,要装载、两种不同的货物,已知装载货物每吨收入元,装载货物每吨收入元,且要求装载的货物不少于货物的一半.请问、两种不同的货物分别装载多少吨时,载货得到的收入最大?并求出这个最大值.
已知:等差数列{}中,=14,前10项和.(1)求;(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
已知的周长为,且.⑴.求边的长;⑵.若的面积为,求角的度数