(本小题满分12分)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程.(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点;(1)当为“准圆”与轴正半轴的交点时,求的方程.(2)求证:为定值.
①求函数y=x+的值域.; ②作函数y=|-x2+2x+3|的图象,并写出它的单调区间及单调性。
已知A={1,2,x2-5x+9},B={3,x2+ax+a},如果A={1,2,3},2∈B,求实数a的值.
设函数,其中为常数. (1)证明:对任意,的图象恒过定点; (2)当时,判断函数是否存在极值?若存在,证明你的结论并求出所有 极值;若不存在,说明理由.
如图,是等边三角形,,,三点共线, (1)求 (2)D是线段BC上的任意点,若,求
已知向量().向量,, 且. (1) 求向量; (2) 若,,求.