(本小题满分12分)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程.(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点;(1)当为“准圆”与轴正半轴的交点时,求的方程.(2)求证:为定值.
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点. (1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.
已知圆C:直线 (1)证明:不论取何实数,直线与圆C恒相交; (2)求直线被圆C所截得的弦长的最小值及此时直线的方程.
已知圆, (Ⅰ)若直线过定点(1,0),且与圆相切,求的方程; (Ⅱ) 若圆的半径为3,圆心在直线:上,且与圆外切,求圆的方程.
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9. (1)判断两圆的位置关系; (2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.
已知点和求过点且与的距离相等的直线方程.