(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,曲线C1 (t为参数),曲线.(Ⅰ)写出C1与C2的普通方程;(Ⅱ)过坐标原点O做C1的垂线,垂足为,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
已知函数通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a,b,c的值。
求与双曲线有共同的渐近线,并且经过点的双曲线方程.
(本小题14分)数列的首项,且 记 (Ⅰ)求,; (Ⅱ)判断数列是否为等比数列,并证明你的结论. (Ⅲ)求的通项公式.
(本小题13分)在中,内角对边的边长分别是,已知,. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
(本小题12分)已知a,b,c分别是△ABC的三个内角A、B、C的对边. (Ⅰ)若△ABC面积为求a,b的值; (Ⅱ)若acosa=bcosB,试判断△ABC的形状.