设函数,其中。(1)当时,在时取得极值,求;(2)当时,若在上单调递增,求的取值范围;(3)证明对任意的正整数,不等式都成立。
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C. (1)以直线AB的倾斜角为参数,求曲线C的参数方程; (2)求点P到点D距离的最大值.
如图,是的内接三角形,PA是圆O的切线,切点为A,PB交AC于点E,交圆O于点D,PA=PE,,PD=1,DB=8. (1)求的面积; (2)求弦AC的长.
已知函数. (1)当时,证明:当时,; (2)当时,证明:.
如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q. (1)求椭圆C的标准方程; (2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,. (1)求证:; (2)若平面与平面所成的锐二面角的大小为,求线段的长度.