李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
先化简,再求值:,其中.
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。 动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可 运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、 FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点 M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题: (1)说明△FMN∽△QWP; (2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形? 当x在何范围时,△PQW不为直角三角形? (3)问当x为何值时,线段MN最短?求此时MN的值。
阅读下列材料: 1×2 = ×(1×2×3-0×1×2), 2×3 = ×(2×3×4-1×2×3), 3×4 = ×(3×4×5-2×3×4), 由以上三个等式相加,可得 1×2+2×3+3×4 = ×3×4×5 = 20。 读完以上材料,请你计算下列各题: (1)1×2+2×3+3×4+···+10×11(写出过程); (2)1×2+2×3+3×4+···+n×(n+1) = _________; (3)1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。
已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G。∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。 (1)求证:△EGB是等腰三角形; (2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_____度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆。经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李。 (1)请你帮助学校设计所有可行的租车方案; (2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?