如图(1),凸四边形,如果点满足,且,则称点为四边形的一个半等角点.在图(2)正方形内画一个半等角点,且满足;在图(3)四边形中画出一个半等角点,保留画图痕迹(不需写出画法).
如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.
在数学课的学习中,我们已经接触了很多代数恒等式,知道可以用图形的面积来解释这些代数恒等式.如图①可以解释恒等式; (1)如图②可以解释恒等式= .(2)如图③是由4个长为,宽为的长方形纸片围成的正方形,①用面积关系写出一个代数恒等式: .②若长方形纸片的面积为3,且长比宽长3,求长方形的周长(其中a.b都是正数,结果可保留根号).
(1)(分解因式) ; (2).
先化简,再求值:,其中.
如图,点B、F、C、E在同一直线上,∠A=∠D,BF=CE,AC∥DF.求证:△ABC≌△DEF