已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本. (1)当销售单价为70元时,每天的销售利润是多少? (2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围; (3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点. (1)求这个二次函数的解析式 (2)设该二次函数的对称轴与轴交于点C,连接BA、BC,求∆ABC的面积.
某小区计划在一个长 40 米,宽 26 米的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB平行,另一条与 AD平行,其余部分种草,如图若使每一块草坪的面积都为144 平方米,求小路的宽度.
如图1,P(2,2),点A在x轴正半轴上运动,点B在y轴上运动,且PA=PB. (1)求证:PA⊥PB; (2)若点A(8,0),求点B的坐标; (3)求OA – OB的值; (4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.
如图1,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它 与△ABC位于直线AE的同侧. (1)同学们对图1进行了热烈的讨论,猜想出如下结论,你认为正确的有______(填序号). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ; ④∠ARB=60°;⑤△CPQ是等边三角形. (2)当等边△CED绕C点旋转一定角度后(如图2),(1)中有哪些结论还是成立的? 并对正确的结论分别予以证明.