已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.
上个月,商店共卖出甲、乙两种商品1000件,这个月甲商品多卖出50%,乙商品少卖出10%,结果产品的总销量减少了4%,上个月甲、乙两种商品各卖出多少件?
解下列各题: (1)解方程组 (2)化简: (3)解不等式:≤,并把它的解集表示在数轴上 (4)解不等式组:,并把它的解集表示在数轴上.
已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:
(1)抛物线的对称轴是_________ .点A(______,____),B(_____,_____); (2)求二次函数y=ax2+bx+3的解析式; (3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?
某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式;(不写出自变量x的取值范围) (2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元? (3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
如图,已知等边,以边BC为直径的半圆与边AB,AC分别交于点D、E,过点D作DF⊥AC于点F, (1)判断DF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC于点H,若等边的边长为8,求AF,FH的长。