已知:如图,△ABC的外接圆⊙O的直径为4,∠A=30°,求BC的长.
如图,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0),(1)求抛物线C1的解析式;(2)如图1,将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P,求△DBP的面积;(3)如图2,连接AP,过点B作BC⊥AP于C,设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC·(AC+EC)为定值.
如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.(1)如果一个二次函数图象经过B、C、D三点,求这个二次函数的解析式;(2)设点P的坐标为(m,0)(m>5),过点P作x轴交(1)中的抛物线于点Q,当以为顶点的三角形与相似时,求点P的坐标.
如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA="16" cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.(1)用含t的式子表示△OPQ的面积S;(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;(3)当△OPQ∽△ABP时,抛物线y=x2+bx+c经过B、P两点,求抛物线的解析式;(4)在(3)的条件下,过线段BP上一动点M作轴的平行线交抛物线于N,求线段MN的最大值.