经过原点和(4,0)的两条抛物线,,顶点分别为,且都在第1象限,连结交轴于,且.分别求出抛物线和的解析式;点C是抛物线的轴上方的一动点,作轴于,交抛物线于D,试判断和的数量关系,并说明理由;直线,交抛物线于M,交抛物线于N,是否存在以点为顶点的四边形是平行四边形,若存在,求出的值;若不存在,说明理由..
某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.今年三月份甲种电脑每台售价多少元?为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?
有一个数学活动,其具体操作过程是: 第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:如图2,若延长MN交线段BC于P,△BMP是什么三角形?请证明你的结论.在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP
如图,过点P(2,)作轴的平行线交轴于点,交双曲线()于点,作交双曲线()于点,连结.已 知求的值设直线MN解析式为,求不等式≥的解集;
有一人患了流感,经过两轮传染后共有81人患了流感,每轮传染中平均一个人传染了几个人
如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形。