如图所示,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,,AE∥CD,.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值.
(本小题满分12分) 某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。 (I)用表示抽检的6件产品中二等品的件数,求的分布列及的数学期望; (II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率。
(本小题满分12分) 已知向量 (I)若求 (II)求的最大值。
(本小题满分15分) 设函数 (Ⅰ)求函数的极值点; (Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围; (Ⅲ)证明:
(本小题满分15分)已知函数(其中) , 点从左到右依次是函数图象上三点,且. (Ⅰ) 证明: 函数在上是减函数; (Ⅱ) 求证:⊿是钝角三角形; (Ⅲ) 试问,⊿能否是等腰三角形?若能,求⊿面积的最大值;若不能,请说明理由.
(本小题共14分)已知函数。 (1)若为方程的两个实根,并且A,B为锐角,求m的取值范围; (2)对任意实数,恒有,证明:.