(本小题共16分)已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线上.(1)求椭圆的标准方程(2)求以OM为直径且被直线截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N.求证:线段ON的长为定值,并求出这个定值.
已知f(x)=ex-ax-1. (1)求f(x)的单调增区间; (2)若f(x)在定义域R内单调递增,求a的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.
求曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离.
求下列函数在x=x0处的导数. (1)f(x)=cosx·sin2x+cos3x,x0=; (2)f(x)=,x0=2; (3)f(x)=,x0=1.
求y=tanx的导数.
求y=在x=x0处的导数.