如图所示,正方形和矩形所在平面相互垂直,是的中点.(I)求证:;(Ⅱ)若直线与平面成45o角,求异面直线与所成角的余弦值.
设p:实数x满足,其中,命题实数满足. (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若是的充分不必要条件,求实数的取值范围.
已知函数,其中,在及处取得极值,其中. (1)求证:; (2)求证:点的中点在曲线上.
已知数列中,. (1)求数列的通项公式; (2)证明:.
设抛物线的焦点为F,准线为,过点F作一直线与抛物线交于A、B两点,再分别过点A、B作抛物线的切线,这两条切线的交点记为P. (1)证明:直线PA与PB相互垂直,且点P在准线上; (2)是否存在常数,使等式恒成立?若存在,求出的值;若不存在,说明理由.
已知数列的前项和为,,且. (1)计算; (2)猜想的表达式,并证明.