.(本小题满分12分)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求甲赢且编号的和为6的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由.
(本小题满分12分)在a>0时,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对x∈R恒成立,若p∧q为假,p∨q为真,求a的取值范围.
(本小题满分12分)已知函数f(x)=1+(-2<x≤2). (1)用分段的形式表示该函数; (2)画出函数的图象. (3)写出函数的值域、单调区间.
(本小题满分10分)已知全集U=R,集合A="{x|" log2(3-x)≤2},集合B={x|} (1)求A,B(2)求()∩B
(本小题满分14分)已知函数 (Ⅰ)求函数的定义域,并证明在定义域上是奇函数; (Ⅱ)若恒成立,求实数的取值范围; (Ⅲ)当时,试比较与的大小关系.
(本题14分)已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P )在椭圆上,线段PB与y轴的交点M为线段PB的中点。 (1)求椭圆的标准方程; (2)点是椭圆上异于长轴端点的任一点,对于△ABC,求的值。