已知椭圆的中心在原点,它的左右两个焦点分别为,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为(1) 求椭圆的方程。(2)设椭圆的一个顶点为直线交椭圆于另一点,求的面积.
如图,在四棱锥中,底面为矩形,侧棱底面,,,, 为的中点. (1)求直线与所成角的余弦值;(2)在侧面内找一点,使面,并求出点到和的距离.
在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且.(1)求点的轨迹的方程;(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.
已知命题:方程有两个不等的负实根,命题:方程 无实根。若或为真,且为假。求实数的取值范围.
已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.
函数.(1)若,求函数的定义域;(2)设,当实数,时,求证:.