(本小题满分13分)已知双曲线的焦点为,且离心率为2;(Ⅰ)求双曲线的标准方程;(Ⅱ)若经过点的直线交双曲线于两点,且为的中点,求直线的方程。
数列的首项,前项和为,满足关系(,,3,4…)(1)求证:数列为等比数列;(2)设数列的公比为,作数列,使,.(,3,4…)求(3)求…的值
()(1)求的定义域;(2)问是否存在实数、,当时,的值域为,且 若存在,求出、的值,若不存在,说明理由.
已知函数(,)(1)求的值域;(2)若,且的最小值为,求的递增区间.
已知偶函数满足:当时,,当时,(1) 求当时,的表达式;(2) 试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.
已知函数(I)如果对任意恒成立,求实数a的取值范围;(II)设函数的两个极值点分别为判断下列三个代数式:①②③中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数并求出的最小值.