(本小题满分13分)已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.
设平面向量,,函数。 (Ⅰ)求函数的值域和函数的单调递增区间; (Ⅱ)当,且时,求的值.
已知函数(为自然对数的底数). (1)求函数在上的单调区间; (2)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.
已知椭圆:的离心率为且与双曲线:有共同焦点. (1)求椭圆的方程; (2)在椭圆落在第一象限的图像上任取一点作的切线,求与坐标轴围成的三角形的面积的最小值; (3)设椭圆的左、右顶点分别为,过椭圆上的一点作轴的垂线交轴于点,若点满足,,连结交于点,求证:.
数列,满足. (1)若是等差数列,求证:为等差数列; (2)若,求数列的前项和.
已知长方体,点为的中点. (1)求证:面; (2)若,试问在线段上是否存在点使得,若存在求出,若不存在,说明理由.