(8分)已知OC是内部的一条射线,M、N分别为OA、OB上的点,线段OM、ON分别以20°/s、10°/s的速度绕点O逆时针旋转。(1)如图①,若,当OM、ON逆时针旋转2s时,分别到OM′、ON′处,求的值;(2)如图②,若OM、ON分别在、内部旋转时,总有,求的值。
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,在方格纸中建立平面直角坐标系如图所示.(1)画出△ABC关于x轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(2)把(1)中的△A1B1C1绕着点O顺时针旋转180°得到△A2B2C2,在图中画出△A2B2C2,并回答△A2B2C2与△ABC对应顶点的坐标有何关系.
如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的点B′处,C的对应点为C′.(1)求出B′点和M点的坐标;(2)求直线A C′的函数关系式;(3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q;①求运动t秒时,Q点的坐标;(用含t的代数式表示)②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?
在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明)
如图,方格中有一个△ABC和直线l;(1)请你在方格中画出△ABC关于直线l对称的△A1B1C1,并判断这两个三角形是否全等;(说出结论即可).(2)请你在方格内,画出满足条件A1B1=AB,B1C1=BC,∠A1=∠A的△A2B2C2并判断△A2B2C2与△ABC是否一定全等.
△ABC的三边长分别为:AB=2a2﹣a﹣7,BC=1O﹣a2,AC=a,(1)求△ABC的周长(请用含有a的代数式来表示);(2)当a=2.5和3时,三角形都存在吗?若存在,求出△ABC的周长;若不存在,请说出理由;(3)若△ABC与△DE成轴对称图形,其中点A与点D是对称点,点B与点E是对称点,EF=4﹣b2,DF=3﹣b,求a﹣b的值.