(本小题满分14分)已知二次函数的图象过点,且函数对称轴方程为.(Ⅰ)求函数的解析式;(Ⅱ)设函数,求在区间上的最小值;(Ⅲ)探究:函数的图象上是否存在这样的点,使它的横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.
以下资料是一位销售经理收集来的每年销售额和销售经验年数的关系:
(1)依据这些数据画出散点图并作直线=78+4.2x,计算 ;(2)依据这些数据由最小二乘法求线性回归方程,并据此计算; (3)比较(1)和(2)中的残差平方和的大小.
一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间由如下一组数据:1)画出散点图;2)检验相关系数r的显著性水平;3)求月总成本y与月产量x之间的回归直线方程
在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量影响的试验,得数据如下(单位:kg)1)画出散点图;2)检验相关系数r的显著性水平;3)求月总成本y与月产量x之间的回归直线方程
2010年春节,又是情人节.这是几十年难遇的“双节”.很多对“新人”赶在这一天申领结婚证.若新郎和新娘的年龄记为(y,x).试考虑以下y关于x的回归问题:(1)如果每个新郎和新娘都同岁,则穿过这些点的回归直线的斜率和截距等于什么?(2)如果每个新郎都比新娘大5岁,则穿过这些点的回归直线的斜率和截距等于什么?(3)如果每个新郎都比新娘大10%,则穿过这些点的回归直线的斜率和截距等于什么?(4)若由一些数据求得回归直线方程为=1.118x-1.091,则由此可得出关于新郎、新娘年龄的什么结论?
一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:
(1)作出散点图;(2)如果y与x线性相关,求出回归直线方程;(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?