(本小题满分12分)已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)(1)求f(x)的解析式;(2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+;(3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.
盒中装有5个产品,其中3个一等品,2个二等品,从中不放回地取产品,每次1个,求: (1)取两次,两次都取得一等品的概率; (2)取两次,第二次取得一等品的概率; (3)取三次,第三次才取得一等品的概率; (4)取两次,已知第二次取得一等品,求第一次取得是二等品的概率.
已知数列{}满足=1,=,(1)计算,,的值;(2)归纳推测,并用数学归纳法证明你的推测.
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料. (1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及数学期望Eξ.
已知函数 (Ⅰ)若曲线在点处的切线与直线平行,求出这条切线的方程; (Ⅱ)若,讨论函数的单调区间; (Ⅲ)对任意的,恒有,求实数的取值范围.
已知三棱锥的底面是直角三角形,且,平面,,是线段的中点,如图所示. (Ⅰ)证明:平面; (Ⅱ)求三棱锥的体积.