某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其它因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?
(满分l2分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=,BC=1,求⊙O的半径.
(满分l0分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图(图).
根据上述信息解答下列问题:(1)m=_______,n=________;(2)在扇形统计图中,D组所占圆心角的度数为_________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6h的学生约有多少名?_________。
(每小题8分,共16分)(1)化简:(a-)÷;(2)已知:在△ABC中,AB=AC. ①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;②如图,点D是线段BC上一点,连结AD,若∠B=∠BAD,求证:△BAC∽△BDA.
(每小题7分,共14分)(1)计算:(-1) 2÷+(7-3)×一()0;(2)如图,在□ABCD中,点E是AD的中点,连结CE并延长,交BA的延长线于点F,求证:FA=AB.
(满分l4分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0),C(8,0),D(8,8).抛物线y=ax2+bx过A,C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,过点E作EF上AD交AD于点F,交抛物线于点G.当t为何值时,线段EG最长?