(本题16分,第(1)小题3分;第(2)小题5分;第(3)小题8分) 已知数列和的通项分别为,(),集合,,设. 将集合中元素从小到大依次排列,构成数列.(1)写出;(2)求数列的前项的和;(3)是否存在这样的无穷等差数列:使得()?若存在,请写出一个这样的数列,并加以证明;若不存在,请说明理由.
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示). (Ⅰ)在三棱锥上标注出、点,并判别MN与平面AEF的位置关系,并给出证明; (Ⅱ)是线段上一点,且,问是否存在点使得,若存在,求出的值;若不存在,请说明理由; (Ⅲ)求多面体E-AFNM的体积.
已知向量,设函数+ (1)若,f(x)=,求的值; (2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的取值范围.
设数列的前项和为,且. (1)证明:数列是等比数列; (2)若数列满足,求数列的前项和为.
若a,b,c均为正数,且a+b+c=6,对任意x∈R恒成立,求m的取值范围.
已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.