(本题16分,第(1)小题3分;第(2)小题5分;第(3)小题8分) 已知数列和的通项分别为,(),集合,,设. 将集合中元素从小到大依次排列,构成数列.(1)写出;(2)求数列的前项的和;(3)是否存在这样的无穷等差数列:使得()?若存在,请写出一个这样的数列,并加以证明;若不存在,请说明理由.
(本小题满分12分)已知函数的最小正周期为,其图象的一条对称轴是直线.(Ⅰ)求,;(Ⅱ)求函数的单调递减区间;(Ⅲ)画出函数在区间上的图象.
(本小题满分12分)已知的面积是30,内角所对边长分别为,.(Ⅰ)求;(Ⅱ)若,求的值.
已知函数(1)判断的单调性并证明;(2)若满足,试确定的取值范围。(3)若函数对任意时,恒成立,求的取值范围。
设函数满足:对任意都有,且(1)求的值;(2)求的值;(3)判断函数是否具有奇偶性,并证明你的结论。
已知函数且.(1)若函数是偶函数,求函数在区间上的最大值和最小值;(2)要使函数在区间上单调递增,求的取值范围.