小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米(注意:根据光的反射定律:反射角等于入射角).
将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上. (1)若随机地抽取一张,则抽到数字恰好为1的概率是; (2)请你通过列表或画树状图分析:先随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求组成的两位数能被4整除的概率.
在数学活动课中,小张为了测量校园内旗杆AB的高度,站在教学楼的顶端C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,已知旗杆与教学楼的水平距离CD为10m. (1)直接写出教学楼CE的高度; (2)求旗杆AB的高度.(结果保留根号)
先化简,再求值:,其中.
解方程: (1)(2)
定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3. (1)请你直接写出“蛋圆”抛物线部分的解析式,自变量的取值范围是; (2)请你求出过点C的“蛋圆”切线与x轴的交点坐标; (3)求经过点D的“蛋圆”切线的解析式.