(本小题14分)如图所示,L是海面上一条南北方向的海防警戒线,在L上点A处有一个水声监测点,另两个监测点B,C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8s后监测点A,20 s后监测点C相继收到这一信号.在当时气象条件下,声波在水中的传播速度是1. 5 km/s.(1)设A到P的距离为 km,用分别表示B、C到P 的距离,并求值;(2)求静止目标P到海防警戒线L的距离(结果精确到0.01 km)。
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦?存在,求出实数的值;若不存在,请说明理由.
在长方体ABCD—中,AB=2,,E为的中点,连结ED,EC,EB和DB,(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.
在中国轻纺城批发市场,季节性服装当季节即将来临时,价格呈上升趋势. 设某服装开始时定价为 10 元,并且每周(7 天)涨价 2 元,5 周后开始保持 20 元的平稳销售;10 周后当季节即将过去时,平均每周降价 2 元,直到 16 周末,该服装已不再销售.(1)试建立价格与周次之间的函数关系;(2)若此服装每件进价与周次之间的关系式,,问该服装第几周每件销售利润最大?
已知函数是定义在上的奇函数,且(1)求实数的值(2)用定义证明在上是增函数(3)解关于的不等式
(Ⅰ)若成绩大于或等于秒且小于秒认为良好,求该班在这次百米测试中成绩良好的人数;(Ⅱ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率。