.(本小题满分12分).如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(本题8分) 在△ABC中,A,B,BC(Ⅰ)求AC的长;(Ⅱ)求AB的长。
(本题7分) 已知:,是第二象限角,求:(Ⅰ);(Ⅱ)的值.
(本小题满分15分)已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求,的标准方程;(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,,且满足?若存在,求出直线的方程;若不存在,说明理由.
如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,∥,,,,,.(Ⅰ)求证:∥平面;(Ⅱ)求直线与平面所成角的正切值.
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.(1)求此抛物线的方程;(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.