(本小题满分12分)在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。
已知函数,若成等差数列. (1)求数列的通项公式; (2)设是不等式整数解的个数,求; (3)记数列的前n项和为,是否存在正数,对任意正整数,使恒成立?若存在,求的取值范围;若不存在,说明理由.
已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点. (1)求椭圆的标准方程; (2)若A是椭圆与y轴负半轴的交点,求的面积; (3)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.
已知函数. (1)当时,求满足的的取值范围; (2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.
本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,已知正方体的棱长为2,分别是的中点. (1)求三棱锥的体积; (2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).
已知函数的定义域为,求函数的值域和零点.