(本小题满分10分)如图,在四棱锥S—ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点.(Ⅰ)求证:AC⊥平面SBD;(Ⅱ)若E为BC中点,点P在侧面△SCD内及其边界上运动,并保持PE⊥AC,试指出动点P的轨迹,并证明你的结论.
(本小题满分12分)在数列 (1)(2)设 (3)求数列
(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.
对于定义域为的函数,若同时满足:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把函数()叫做闭函数. (1) 求闭函数符合条件②的区间; (2) 若是闭函数,求实数的取值范围.
比较与的大小
设函数,问是否存在, 使恒成立?证明你的结论.