如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.(1)求证:直线BC1∥平面AB1D;(2)求二面角B1-AD-B的大小;(3)求三棱锥C1-ABB1的体积。
(已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为且过点(4,-) (Ⅰ)求双曲线方程; (Ⅱ)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上; (Ⅲ)求△F1MF2的面积.
已知点B(5,0)和点C(-5,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2: (Ⅰ)如果k1·k2=,求点A的轨迹方程; (Ⅱ)如果k1·k2=a,其中a≠0,求点A的轨迹方程,并根据a的取值讨论此轨迹是何种曲线.
中心在原点,一焦点为F1(0,5)的椭圆被直线y=3x-2截得的弦的中点横坐标是,求此椭圆的方程。
椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
求一条渐近线方程是,一个焦点是的双曲线标准方程,并求此双曲线的离心率.