已知一纸箱中放有大小均匀的只白球和只黄球,从箱中随机地取出一只白球的概率是.写出与的函数关系式当时,再往箱中放进20只白球,求随机地取出一只黄球的概率.
⊙O的半径为13cm,弦AB∥CD,AB=10cm,CD=24cm.求AB与CD间的距离。
已知:如图,AB是⊙O的直径,AD⊥AB于A, BC⊥AB于B,若∠DOC= 90°.求证:DC是⊙O的切线.
如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.
如图,⊙O1和⊙O2相交于点A、B,经过点A的直线分别交两圆于点C、D,经过点B的直线分别交两圆于点E、F,且EF∥CD。求证:CE=DF。
如图,⊙O1和⊙O2相交于A、B两点,AD是⊙O1的直径,且圆心O1在⊙O2上,连结DB并延长交⊙O2于点C,求证:CO1⊥AD。