某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08元的价格退回报社.在一个月(30天)里,有20天每天可以卖出400份,其余10天每天只能卖出250份.设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算该销售点一个月最多可赚得多少元?
求值
已知圆C的圆心在坐标原点,且过点M().(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;(3)若直线l与圆C相切,且l与x,y轴的正半轴分别相交于A,B两点,求△ABC的面积最小时直线l的方程.
已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b.(1)求k,b的值,并写出数列{an}的通项公式;(2)记,求数列{bn}的前n和Sn.
如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.(1)求证:BD⊥AC1 ;(2)若AB=,AA1=,求AC1与平面ABC所成的角.
已知函数.(1)求函数的最小正周期;(2)将函数的图像上所有的点向右平移个单位,得到函数的图像,写出的解析式,并求在x∈(0,π)上的单调递增区间.