(12分)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率;(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率.
已知,考查 ①; ②; ③. 归纳出对都成立的类似不等式,并用数学归纳法加以证明.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (1)求取出的4个球均为黑球的概率; (2)求取出的4个球中恰有1个红球的概率; (3)设为取出的4个球中红球的个数,求的分布列.
已知(是正实数)的展开式的二项式系数之和为256,展开式中含项的系数为112. (1)求的值; (2)求展开式中奇数项的二项式系数之和; (3)求的展开式中含项的系数. (用数字作答)
4个男同学,3个女同学站成一排. (1)男生甲必须排在正中间,有多少种不同的排法? (2)3个女同学必须排在一起,有多少种不同的排法? (3)任何两个女同学彼此不相邻,有多少种不同的排法? (4)其中甲、乙两名同学之间必须有3人,有多少种不同的排法? (用数字作答)
设实部为正数的复数,满足,且复数在复平面上对应的点在第一、三象限的角平分线上. (1)求复数; (2)若为纯虚数, 求实数的值.