(本小题满分12分)设数列的前项和为,点在直线上,(为常数,,).(1)求;(2)若数列的公比,数列满足,,,求证:为等差数列,并求;(3)设数列满足,为数列的前项和,且存在实数满足,求的最大值.
(本小题10分)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元).(1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小, 并求出最小总费用.
(本小题10分)在△ABC中,角A,B,C的对边分别为,且满足,.(1)求△ABC的面积. (2)若,求的值.
((本小题12分)已知指数函数满足:g(2)=4,定义域为的函数是奇函数。(1)确定的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围。
((本小题12分)如图, 在三棱柱中, 底面,, ,, 点D是的中点.(1) 求证;(2) 求证平面
((本小题12分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|. (1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.