古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性,若把第一个三角形数记为a,第二个三角数形记为a,……,第n个三角形数记为a,计算a- a,a- a……由此推算a-a=
a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=-1,-1的差倒数是=.已知a1=-,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2015 = .
设[x]表示不超过x的最大整数,计算[2.7] + [-4.5] = .
已知|x|=4, y2=4, 则x-y的值为__________ .
比较大小(用“>,<,=”表示):-|-2|___________-(-2).
大家知道,它在数轴上的意义是表示的点与原点(即表示的点)之间的距离.又如式子,它在数轴上的意义是表示的点与表示的点之间的距离.类似地,式子在数轴上的意义是 .