如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点. (Ⅰ)求椭圆C的方程; (II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
设函数 (Ⅰ)若函数在处取得极小值是,求的值; (Ⅱ)求函数的单调递增区间; (Ⅲ)若函数在上有且只有一个极值点, 求实数的取值范围.
在空间五面体ABCDE中,四边形ABCD是正方形,,. 点是的中点. 求证: (I) (II)
(本小题15分) 已知函数. (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)若函数在其定义域内为增函数,求正实数的取值范围; (Ⅲ)设函数,若在上至少存在一点,使得>成立,求实数的取值范围。
(本小题10分)已知函数 ⑴求证:函数f(x)在上为增函数;⑵证明:方程没有负根.