某工厂甲、乙两名工人参加操作技能培训。现分别从他们在培训期间参加的若干次测试成绩中随机抽取6次,记录如下:
⑴请你计算这两组数据的平均数;⑵现要从中选派一人参加操作技能比赛,从成绩的稳定性考虑,你认为选派哪名工人参加合适?请说明理由。
数学兴趣小组测量校园内旗杆的高度,有以下两种方案:方案一:小明在地面直上立一根标杆EF,沿着直线BF后退到点D,使眼睛C、标杆的顶点E 、旗杆的顶点A在同一直线上(如图1).测量:人与标杆的距离DF=1m,人与旗杆的距离DB=16m,人的目高和标杆的高度差EG=0.9m,人的高度CD=1.6m.方案二:小聪在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米(如图2).请你结合上述两个方案,分别画出符合题意的示意图,并求出旗杆的高度.
如图,△ABC是等边三角形,D、E在BC边所在的直线上,且BC2=BD•CE.(1)求∠DAE的度数(2)求证:AD2=DB•DE
设函数(k是常数).(1)当k=1和k=2时的函数和的图像如图所示,请你在同一坐标系中画出k=3时函数的图像;(2)根据图像,写出你发现的两条结论;(3)将函数的图像向左平移2个单位,再向下平移4个单位,得到函数的图像。请写出函数的解析式,回答自变量x取何值时,函数的最小值是多少?
如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF(2)若CD=6,CA=8,求AE的长
学校组织春游,安排九年级三辆车,小明与小慧都可以从这三辆车中任意选一辆搭乘。(1)用树状图(或列表法)表示小明与小慧乘车所有可能出现的结果`(三辆车分别用甲、乙、丙表示);(2)求小明与小慧乘车不同的概率有多大?