(本小题满分14分)已知函数,.(1)设(其中是的导函数),求的最大值;(2)证明: 当时,求证:;(3)设,当时,不等式恒成立,求的最大值.
(本小题满分12分)某校高三文科(1)班学生参加“大联考”,其数学成绩(已折合成百分制)的频率分布直方图如图所示,其中成绩分布区间为,,,,,,现已知成绩落在的有人.(1)求该校高三文科(1)班参加“大联考”的总人数;(2)根据频率分布直方图,估计该班此次数学成绩的平均分(可用中值代替各组数据的平均值);(3)现要从成绩在和的学生中共选人参加某项座谈会,求人来自于同一分数段的概率.
(本小题满分12分)设的内角所对边的长分别是,且.(1)求的值;(2)若的面积为,求的值.
(本小题满分14分)已知函数(为自然对数的底数).(Ⅰ)求函数的单调区间;(Ⅱ)若,的导数在上是增函数,求实数b的最大值;(Ⅲ)求证:对一切正整数均成立.
(本小题满分12分)设正项数列的前项和为,且,,数列满足,为数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)若不等式对任意的恒成立,求实数的取值范围.
(本小题满分12分)如图四棱锥,,,平面,,M为的中点.(Ⅰ)求证:平面;(Ⅱ)在平面上找一点N,使得平面;(Ⅲ)求直线与平面所成角的正弦.