(12分)为了在如图所示的直河道旁建造一个面积为5000m2的矩形堆物场,需砌三面砖墙BC、CD、DE,出于安全原因,沿着河道两边需向外各砌10m长的防护砖墙AB、EF,若当BC的长为xm时,所砌砖墙的总长度为ym,且在计算时,不计砖墙的厚度,求(1)y关于x的函数解析式y=f(x);(2)若BC的长不得超过40m,则当BC为何值时,y有最 小值,并求出这个最小值.
已知向量,, (I)若∥,求的值; (II)若,求的值。
已知函数(其中0≤≤)的图象与y轴交于点, (I)求的解析式; (II)如图,设P是图象上的最高点,M、N是图象与x轴的交点,求与的夹角的余弦值。
如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为. (1)求椭圆的方程. (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程。
F1,F2为双曲线的焦点,过作垂直于轴的直线交双曲线与点P且∠P F1F2=300,求双曲线的渐近线方程.