如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=.写出顶点A、B、C的坐标;如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.①求出y与x之间的函数关系式,并写出自变量x的取值范围;②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.
一次函数 y = kx + b 的图象经过点 A ( − 2 , 12 ) , B ( 8 , − 3 ) .
(1)求该一次函数的解析式;
(2)如图,该一次函数的图象与反比例函数 y = m x ( m > 0 ) 的图象相交于点 C ( x 1 , y 1 ) , D ( x 2 , y 2 ) ,与 y 轴交于点 E ,且 CD = CE ,求 m 的值.
如图,甲建筑物 AD ,乙建筑物 BC 的水平距离 AB 为 90 m ,且乙建筑物的高度是甲建筑物高度的6倍,从 E ( A , E , B 在同一水平线上)点测得 D 点的仰角为 30 ° ,测得 C 点的仰角为 60 ° ,求这两座建筑物顶端 C 、 D 间的距离(计算结果用根号表示,不取近似值).
某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.
(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?
为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取 n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:
(1)求 n 的值;
(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;
(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.
如图, EF = BC , DF = AC , DA = EB .求证: ∠ F = ∠ C .