(本题满分10分)已知:如图,是的直径,是上一点,CD⊥AB,垂足为点,是 的中点,与相交于点,8 cm,cm.(1)求的长;(2)求的值.
(广元)经统计分析.某市跨河大桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞.此时车流速度为0千米/时;当车流密度不超过20辆/千米,车流速度为80千米/时.研究表明:当时,车流速度v是车流密度x的一次函数. (1)求大桥上车流密度为100辆/千米时的车流速度; (2)在某一交通时段.为使大桥上的车流速度大于60千米/时且小于80千米/时,应把大桥上的车流密度控制在什么范围内?
(广元)如图,AB是⊙O的弦,D为半径OA的中点.过D作CD⊥OA交弦AB于点E,交⊙O于点F.且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=.求⊙O的半径.
(广元)如图,已知抛物线()与x轴相交干点A、B.与y轴相交于点C,且点A在点B的左侧. (1)若抛物经过点C(2,2),求实数m的值; (2)在(1)的条件下,解答下列问题: ①求出△ABC的面积; ②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标; (3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在.请说明理由.
(绵阳)如图,反比例函数()与正比例函数相交于A(1,k),B(﹣k,﹣1)两点. (1)求反比例函数和正比例函数的解析式; (2)将正比例函数的图象平移,得到一次函数的图象,与函数()的图象交于C(,),D(,),且,求b的值.
(绵阳)已知抛物线()与y轴相交于A点,顶点为M,直线分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点. (1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标; (2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积; (3)在抛物线()上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.