本小题满分10分)选修4—4:坐标系与参数方程.已知曲线C: (为参数), C:(为参数)。(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线,(为参数)距离的最小值.
已知,,且直线与曲线相切.(1)若对内的一切实数,不等式恒成立,求实数的取值范围;(2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数 都有成立;(3)求证:.
设,,其中是常数,且.(1)求函数的极值;(2)证明:对任意正数,存在正数,使不等式成立;(3)设,且,证明:对任意正数都有:.
已知二次函数,关于x的不等式的解集为,其中m为非零常数.设.(1)求a的值;(2)如何取值时,函数存在极值点,并求出极值点;(3)若m=1,且x>0,求证:
设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).
设命题p:关于x的不等式2|x-2|<a的解集为;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.