已知函数。(Ⅰ)讨论函数的单调区间;(Ⅱ)若在恒成立,求的取值范围。
(本小题满分15分)已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1.F2分别是椭圆的左.右焦点,直线PF1与圆C相切.(1)求m的值与椭圆E的方程;(2)设Q为椭圆E上的一个动点,求的范围.
本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面ACE.(1)求证:AEBE;(2)求三棱锥D—AEC的体积;(3)求二面角A—CD—E的余弦值.
(本小题满分14分)已知数列中,,,其前项和满足,令.(1)求数列的通项公式;(2)若,求证:().
(本小题满分14分)在△ABC中,分别为角A、B、C的对边, ,="3," △ABC的面积为6,D为△ABC内任一点,点D到三边距离之和为d。(1)角A的正弦值; ⑵求边b、c; ⑶求d的取值范围
(本小题满分15分)如图所示,已知直线的斜率为且过点,抛物线, 直线与抛物线有两个不同的交点,是抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点.(1)求的最小值;(2)求的取值范围;(3)若为坐标原点,问是否存在点,使过点的动直线与抛物线交于两点,且以为直径的圆恰过坐标原点, 若存在,求出动点的坐标;若不存在,请说明理由.