求函数的值域.
已知函数f(x)=-x3+x2,g(x)=aln x,a∈R.(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;(2)设F(x)=若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.
如图,椭圆=1(a>b>0)的上,下两个顶点为A,B,直线l:y=-2,点P是椭圆上异于点A,B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1,BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1).(1)求k1·k2的值;(2)求MN的最小值;(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.
某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是:P(x)=x(x+1)(41-2x)(x≤12且x∈N*)(1)写出第x月的需求量f(x)的表达式;(2)若第x月的销售量g(x)=(单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403)
如图,在四棱锥PABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.(1)求证:平面PAB⊥平面PCB;(2)求证:PD∥平面EAC.
设向量a=(2,sin θ),b=(1,cos θ),θ为锐角.(1)若a·b=,求sin θ+cos θ的值;(2)若a∥b,求sin的值.