(本小题满分10分)如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、(-1,0)、(1,0)、(-1,-1)。(1)求经过A、B、C三点的抛物线的表达式;(2)以P为位似中心,将△ABC放大,使得放大后的△A1B1C1与△OAB对应线段的比为3:1,请在右图网格中画出放大后的△A1B1C1;(所画△A1B1C1与△ABC在点P同侧);(3)经过A1、B1、C1三点的抛物线能否由(1)中的抛物线平移得到?请说明理由。
如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过点A。 (1)(2分)求c的值;. (2)(6分)若a=-l,且抛物线与矩形有且只有三个交点A、D、E,求△ADE的面积S的最大值; (3)(6分)若抛物线与矩形有且只有三个交点A、M、N,线段MN的垂直平分线l过点O,交线段BC于点 F。当BF=1时,求抛物线的解析式.
(1)(3分)如图①,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D. 求证:AB2=AD·AC; (2)(4分)如图②,在Rt△ABC中,∠ABC=90°,点D为BC边上的点,BE⊥AD于点E,延长BE交AC 于点F.,求的值; (3)(5分) 在Rt△ABC中,∠ABC=90°,点D为直线BC上的动点(点D不与B、C重合),直线BE⊥AD 于点E,交直线AC于点F。若,请探究并直接写出的所有可能的值(用含n的式子表 示),不必证明.
如图,一次函数的图象过点A(0,3),且与反比例函数 (x>O)的图象相交于B、C两点. (1)(5分)若B(1,2),求的值; (2)(5分)若AB=BC,则的值是否为定值?若是,请求出该定值;若不是,请说明理由.
如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB. (1)(5分)求证:CG是⊙O的切线; (2)(5分)若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.
如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x(s)之间的关系式为.发射3 s后,导弹到达A点,此时位于与L同一水平面的R处雷达站测得AR的距离是2 km,再过3s后,导弹到达B点. (1)(4分)求发射点L与雷达站R之间的距离; (2)(4分)当导弹到达B点时,求雷达站测得的仰角(即∠BRL)的正切值.