已知, 点在曲线上且 (Ⅰ)求证:数列为等差数列,并求数列的通项公式;(Ⅱ)设数列的前n项和为,若对于任意的,存在正整数t,使得恒成立,求最小正整数t的值.
如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.(1)求证:△APM∽△ABP;(2)求证:四边形PMCD是平行四边形.
如图所示,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.(1)求证:A,E,F,D四点共圆;(2)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
如图所示,AB是☉O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且BD·BE=BA·BF,求证:(1)EF⊥FB;(2)∠DFB+∠DBC=90°.
如图所示,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线CD交AE于点F,交AB于点D.(1)求∠ADF的度数;(2)若AB=AC,求AC∶BC.
如图所示,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.