36的算术平方根是 ;-27的立方根是 .
函数的自变量并的取值范围是__________.
若一个多边形的内角和是900°,则这个多边形的边数是__________.
请同学们认真阅读、研究,完成“类比猜想”及后面的问题. 习题解答: 习题如图13(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由. 解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°, ∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上. ∴∠E′AF=90°﹣45°=45°=∠EAF, 又∵AE′=AE,AF=AF ∴△AE′F≌△AEF(SAS) ∴EF=E′F=DE′+DF=BE+DF. 习题研究 观察分析:观察图(1),由解答可知,该题有用的条件是①ABCD是四边形,点E、F分别在边BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=∠BAD. 类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗? 研究一个问题,常从特例入手,请同学们研究:如图13(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗? (2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗? 归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:.
如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=
如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.