已知函数,(1) 设(其中是的导函数),求的最大值;(2) 证明: 当时,求证: ; (3) 设,当时,不等式恒成立,求的最大值
(本小题满分12分)已知数列是等比数列,首项,公比,其前项和为,且,,成等差数列. (1)求数列的通项公式; (2)若数列满足,为数列的前项和,若恒成立,求的最大值.
(本小题满分12分)在中,所对的边分别,,. (1)求; (2)若,求.
(本小题满分14分)椭圆过点,离心率为,左右焦点分别为,过点的直线交椭圆于两点。 (1)求椭圆的方程; (2)当的面积为时,求的方程.
(本小题满分13分)设函数 (1)当时,求函数的单调区间; (2)令,其图象上任意一点处切线的斜率恒成立,求实数的取值范围. (3)当时,方程在区间内有唯一实数解,求实数的取值范围。
(本小题满分12分)数列的前n项和为,且 (1)求数列的通项公式; (2)若数列满足:,求数列的通项公式; (3)令,求数列的 n项和.