(本小题满分13分)设函数()若上是增函数,在(0,1)上是减函数,函数在R上有三个零点,且1是其中一个零点。 (1)求b的值; (2)求最小值的取值范围。
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
在△ABC中,已知角A为锐角,且. (1)、将化简成的形式; (2)、若,求边AC的长. ;
设椭圆过点,离心率为 (Ⅰ)求椭圆的方程; (Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足=,证明:点的轨迹与无关.
已知函数上为增函数. (1)求k的取值范围; (2)若函数的图象有三个不同的交点,求实数k的取值范围.
对任意都有 (Ⅰ)求和的值; (Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明; (Ⅲ)令 试比较与的大小.