当 时,二次根式在实数范围内有意义
因式分解:_____________________.
如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到新正方形A2B2C2D2(如图(2));以此下去…,则正方形A4B4C4D4的面积为 ▲ .
如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于 ▲ ;
若二次函数的对称轴是过(1,0)且与x轴垂直的直线,且部分图象如图16所示,则关于x的一元二次方程的一个解,另一个解 ▲ ;
如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60º. 现沿直线E将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角有 ▲ 个;