观察下列各式及验证过程:. 验证: . 验证: . 验证: 按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;针对上述各式反映的规律,写出用n(n 的自然数)表示的等式,并进行验证.
(本小题满分8分) 已知正比例函数(a<0)与反比例函数的图象有两个公共点,其中一个公共点的纵坐标为4. (1)求这两个函数的解析式; (2)在坐标系中画出它们的图象(可不列表); (3)利用图像直接写出当x取何值时,.
(本小题满分6分) 如图,CD切⊙O于点D,连结OC,交⊙O 于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半 径为10,sin∠COD=. 求:(1)弦AB的长; (2)CD的长;
(本小题满分6分) 在下面三小题中任选其中两小题完成
(本小题满分12分)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B 两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点,过P点作y轴的平行线交 抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F, 使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.
(本小题满分10分)如图,在平面直角坐标系中,直线L:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P。(1)连结PA,若PA=PB,试判断⊙P与X轴的位置关系,并说明理由;(2)当K为何值时,以⊙P与直线L的两个交点和圆心P为顶点的三角形是正三角形?