观察下列各式及验证过程:. 验证: . 验证: . 验证: 按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;针对上述各式反映的规律,写出用n(n 的自然数)表示的等式,并进行验证.
如图,在钝角中,过钝角顶点作交于点.请用尺规作图法在边上求作一点,使得点到的距离等于的长.(保留作图痕迹,不写作法)
(1)如图①,点是外一点,点是上一动点.若的半径为3,且,则点到点的最短距离为 ;
(2)如图②,已知正方形的边长为4,点、分别从点、同时出发,以相同的速度沿边、方向向终点和运动,连接和交于点,则点到点的最短距离为 ;
(3)如图③,在等边中,,点、分别从点、同时出发,以相同的速度沿边、方向向终点和运动,连接和交于点,求面积的最大值,并说明理由.
如图,已知抛物线与轴交于、两点.与轴交于点.且,.
(1)求抛物线的函数表达式;
(2)在抛物线的对称轴上是否存在一点,使周长最小?若存在,求出点的坐标;若不存在,请说明理由.
(3)连接、,在抛物线上是否存在一点,使?若存在,求出点的坐标;若不存在,请说明理由.
如图,为的内接三角形,的角平分线交于点,过点作交的延长线于点.
(1)求证:为的切线;
(2)若,求的大小.
小明的爸爸买了一个密码旅行箱,密码由六位数字组成.现小明爸爸已将密码的前四位数字确定为小明的生日,后两位数字由小明自己确定.小明想把十位上的数字设置为奇数,个位上的数字设置为偶数,且两个数位上的数字之和为9.这两个数位上的数字他采用转转盘的方式来确定,于是,小明设计了如图所示的两个可以自由转动的转盘和(每个转盘被分成五个面积相等的扇形区域).使用的规则如下:
同时转动两个转盘,转盘均停正后,记下两个指针所指扇形区域上的数(如果指针指到分割线上,那么就取指针右边扇形区域上的数).若记下的两个数之和为9,则确定为密码中的数字;否则,按上述规则继续转动两个转盘,直到记下的两个数之和为9为止.请用列表法或画树状图的方法,求小明同时转动两个转盘一次,得到的两个数之和恰好为9的概率.