观察下列各式及验证过程:. 验证: . 验证: . 验证: 按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;针对上述各式反映的规律,写出用n(n 的自然数)表示的等式,并进行验证.
在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
如图,⊙O的半径r=25,四边形ABCD内接圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.
某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前n(3<n≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<n≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<n≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.
如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
如图,一次函数y1=x+1的图像与反比例函数(k为常数,且k≠0)的图像都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)结合图像直接比较:当时,与的大小。