描述证明:海宝在研究数学问题时发现了一个有趣的现象:请你用数学表达式写出海宝发现的这个有趣的现象;请你证明海宝发现的这个有趣现象.
如图,在梯形ABCD中,AD∥BC,∠BAD=90°,对角线BD⊥DC. (1)△ABD与△DCB相似吗?请回答并说明理由; (2)如果AD=4,BC=9,求BD的长.
解方程 (1)(2)
我们规定:函数(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数就是反比例函数(k是常数,k≠0). (1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数; (2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数的图象经过点B、E,求该奇特函数的表达式; (3)把反比例函数的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象; (4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.
矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处. 图1图2 (1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA. ① 求证:△OCP∽△PDA;② 若△OCP与△PDA的面积比为1:4,求边AB的长. (2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
已知关于x的方程mx2+(3m+1)x+3=0(m≠0). (1)求证:方程总有两个实数根; (2)若方程的两个实数根都是整数,求正整数m的值; (3)在(2)的条件下,将关于的二次函数y= mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.