下列说法①如图,扇形的圆心角,点是上异于的动点,过点作于,作于,连接,点在线段上,且,连接。当点在上运动时,在中,长度不变的是; ②如图,正方形纸片的边长为,⊙的半径为,圆心在正方形的中心上,将纸片按图示方式折叠,折叠后点于点重合,且切⊙于点,延长交边于点,则的长为;③已知中,,则其内心和外心之间的距离是。其中正确的有 (请写序号,少选,错选均不得分)
如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点,第2次从点向右移动6个单位长度至点,第3次从点向左移动9个单位长度至点,…,按照这种移动方式进行下去,点表示的数是,如果点与原点的距离不小于20,那么的最小值是.
如图是跷跷板的示意图,立柱OC与地面垂直,以O为横板AB的中点,AB绕点O上下转动,横板AB的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB="2" m,OC="0.5" m,通过计算得到此时的h1,再将横板AB 换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1h2(填“>”、“=”或“<”).可进一步得出,h随横板的长度的变化而(填“不变”或“改变”).
如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)
分解因式:=.
半径为4cm,圆心角为60°的扇形的面积为cm2.